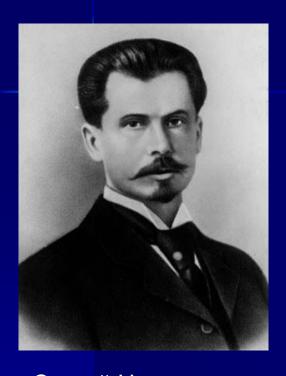
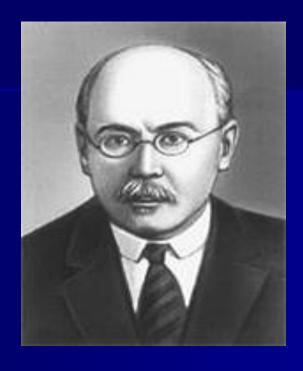
НАУЧНО-ПРАКТИЧЕСКИЕ ПРИНЦИПЫ ИЗУЧЕНИЯ ДЕЯТЕЛЬНОСТИ МИКРООРГАНИЗМОВ В ПОДЗЕМНОМ ПРОСТРАНСТВЕ САНКТ-ПЕТЕРБУРГА ПРИ ЕГО ОСВОЕНИИ И ИСПОЛЬЗОВАНИИ

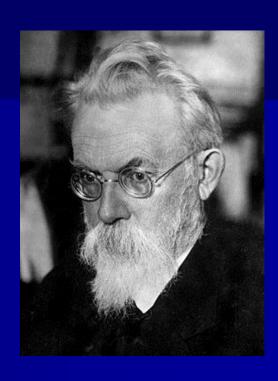
SCIENTIFIC-PRACTICAL PRINCIPLES FOR THE STUDY OF THE ACTIVITIES OF MICROORGANISMS IN THE UNDERGROUND SPACE OF SAINT PETERSBURG DURING ITS DEVELOPMENT AND USE

Профессор, д.г.-м.н. Дашко Регина Эдуардовна Санкт-Петербургский горный университет


Профессор, д.б.н., Власов Дмитрий Юрьевич Санкт-Петербургский государственный университет



К истории вопроса


Сергей Николаевич Виноградский 1856-1953

Экологическая микробиология

Василий Леонидович Омелянский 1867–1928

Геологическая микробиология

Владимир Иванович Вернадский 1863–1945

Биогеохимия

Формирование представлений о подземной микробиоте

- Активная деятельность микроорганизмов в нефтяных месторождениях (глубины 1 км и более) (Гинзбург-Карагичева, 1924).
- В 1994 году опубликованы материалы о микробиоте грунтовых вод на глубинах 7-10 м.
- Обнаружена активная микробная жизнь на глубине 2,8 км (Южная Африка, скважина на золотом прииске) (2006, Science).
- Молекулярными методами показано, что толща земной коры заселена микроорганизмами до глубины 6-7 км или даже более.
- Формирование понятия «Подземная биосфера»
- Научная дисциплина «Подземная микробиология»

Экстремофилы

Психрофилы, термофилы

Ксерофилы

Галофилы

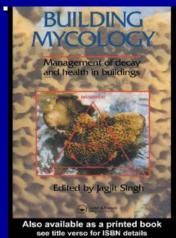
Ацидофилы и алкалофилы

Барофилы

Экстремофилы – организмы, живущие в крайних условиях среды обитания, лимитирующих жизнь (MacElroy, 1974).

Международное общество исследователей экстремофильных организмов (www.extremophiles.org)

Микробиология подземного пространства


(Subsurface microbiology). Официально декларирована в 1998 году в Давосе как междисциплинарная наука.

- International Society for Subsurface Microbiology
- http://www.subsurfacemicrobiology.com
 - •Биогеохимия подземного пространства
 - •Микробиология подземных сооружений и захоронений
 - •Микробиология экстремальной подземной среды
 - Молекулярная подземная микробиология
 - •Роль микробиоты в трансформации грунтов

Микробиология и строительство

- С 1968 года существует Европейская ассоциация микробиологов и строителей.
- В Германии существует государственный центр по испытанию материалов на биостойкость (институт материаловедения).
- Появилась строительная микология.
- Проверка материалов на биостойкость.
- Появление нормативных документов.

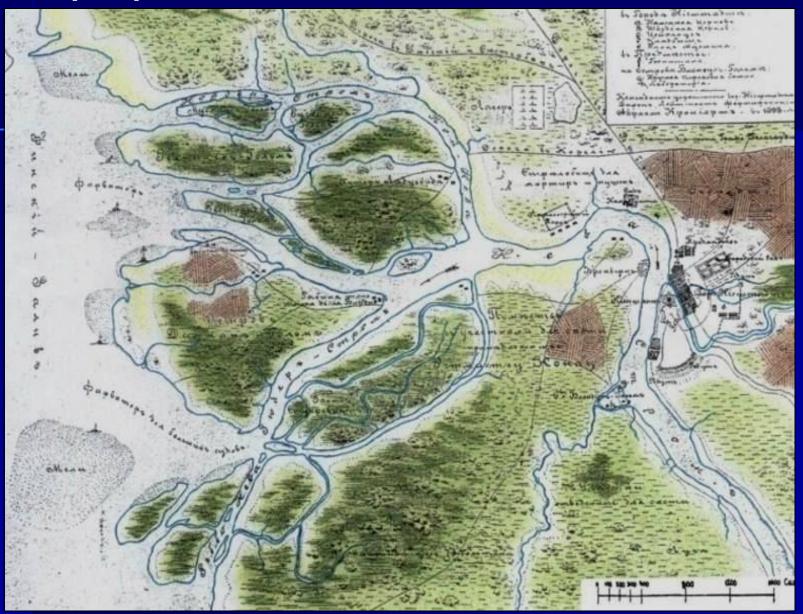
Система региональных нормативных документов градостроительной деятельности в Санкт-Петербурге

РЕГИОНАЛЬНЫЕ ВРЕМЕННЫЕ СТРОИТЕЛЬНЫЕ НОРМЫ

ЗАЩИТА
СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ,
ЗДАНИЙ И СООРУЖЕНИЙ
ОТ АГРЕССИВНЫХ ХИМИЧЕСКИХ
И БИОЛОГИЧЕСКИХ ВОЗДЕЙСТВИЙ
ОКРУЖАЮЩЕЙ СРЕДЫ

РВСН 20-01-2006 Санкт-Петербург (ТСН 20-303-2006 Санкт-Петербург)

ИЗДАНИЕ ОФИЦИАЛЬНОЕ


Правительство Санкт-Петербурга Санкт-Петербург 2006 **«Биоповреждение"** – это изменения структурных и функциональных характеристик объектов, которые наносят живые организмы своим присутствием и деятельностью.

Подземное пространство как многокомпонентная система на примере Санкт-Петербурга

Карта развития болотных отложений 1698 года

Основные газы в подземном пространстве Санкт-Петербурга: метан ($\mathrm{CH_4}$), азот ($\mathrm{N_2}$), водород ($\mathrm{H_2}$), диоксид углерода ($\mathrm{CO_2}$), сероводород ($\mathrm{H_2S}$), аммиак ($\mathrm{NH_3}$)

ПРИРОДНЫЕ ФАКТОРЫ

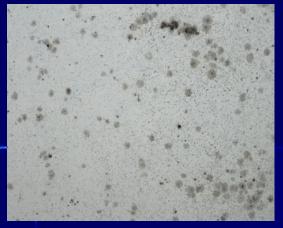
КОМПЛЕКСНОЕ АНТРОПОНЕННОЕ ВОЗДЕЙСТВИЕ

БИОДЕСТРУКЦИЯ МАТЕРИАЛОВ

ИЗМЕНЕНИЕ СТРУКТУРНЫХ ХАРАКТЕРИСТИК ОБЪЕКТОВ ИЗМЕНЕНИЕ ФУНКЦИОНАЛЬНЫХ ХАРАКТЕРИСТИК ОБЪЕКТОВ

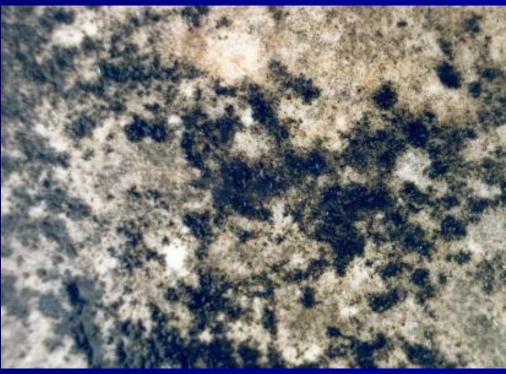
НАКОПЛЕНИЕ БИОДЕСТРУТОРОВ

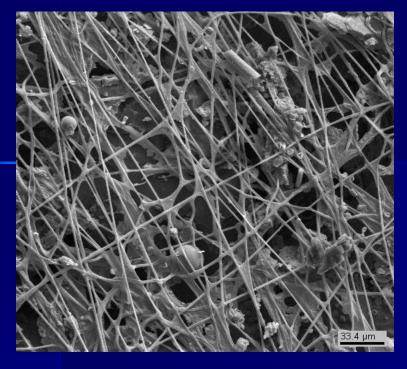
Основные направления исследований биоповреждений материалов


- Анализ факторов и проявлений микробной коррозии материалов и конструкций, изучение механизмов биодеструкции
- Изучение состава микробных сообществ на материалах и сооружениях
- Оценка содержания микроорганизмов в окружающих экосистемах, как источника биологического поражения материалов и конструкций

Тенденции изменения микробиоты, связанной с биоповреждением материалов и конструкций

- Возрастание числа видов микроорганизмов, вызывающих биопоражение природных и искусственных материалов
- Увеличение количества материалов, повреждаемых микроорганизмами
- Повышение агрессивности уже известных видов

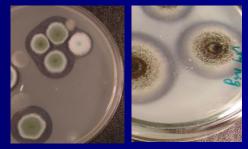

микробные сообщества


- •Высокая деструктивная активность
- Связь с различными формами разрушения материалов
- Устойчивость к внешним воздействиям
- Усвоение различных источников *С* и *N2*
- Неограниченный рост
- Сложный состав и структура

Микробные взаимодействия

- В природе микробы не встречаются в «чистой культуре»
- На поверхности материалов микробы находятся в постоянном взаимодействии




БИОПЛЕНКИ – СООБЩЕСТВА МИКРООРГАНИЗМОВ ВЫСОКОЙ ПЛОТНОСТИ И ФИЗИОЛОГИЧЕСКОЙ АКТИВНОСТИ

- БИОПЛЕНКИ распространены повсеместно.
- Большинство микроорганизмов существует в виде биопленок.
- Их толщина может измеряться десятками нанометров.
- Основная масса биопленок состоит из полисахаридов, продуцируемых отдельными клетками.
- Образование биопленок одна из основных стратегий выживания микробов в окружающей среде

Основные механизмы воздействия грибов на каменистых субстрат

- •Выделение агрессивных кислот и других метаболитов
- •Физическое воздействие на субстрат
- •Проникновение в толщу субстрата по трещинам и бороздам за счет химического и физического действия
- •Изменение микроусловий вокруг формирующейся колонии



Щавелевая $H_2C_2O_4\cdot 2H_2O$ Муравьиная HCOOH Фумаровая $(CHCOOH)_2CH(COOHHOOC)$ OC)CH Глюконовая $CH_2OH(CHOH)_4COOH$ Уксусная CH_3COOH

Основные свойства грибов, повреждающих материалы

- Способность к адгезии
- Устойчивость в внешним факторам
- Богатый ферментативный аппарат
- Морфологическая пластичность
- Рост на твердом субстрате
- Ассоциации с другими организмами

Бактерии

Хемолитотрофы: нитрифицирующие, тионовые

Окисляют восстановленные соединения серы и азота

Образуют азотную и серную кислоту

Вызывают растворение

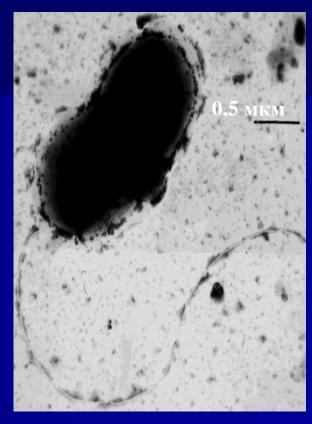
Хемоорганотрофы: амонификаторы, актиномицеты и др.

Образуют органические кислоты

Образуют растворимые комплексы

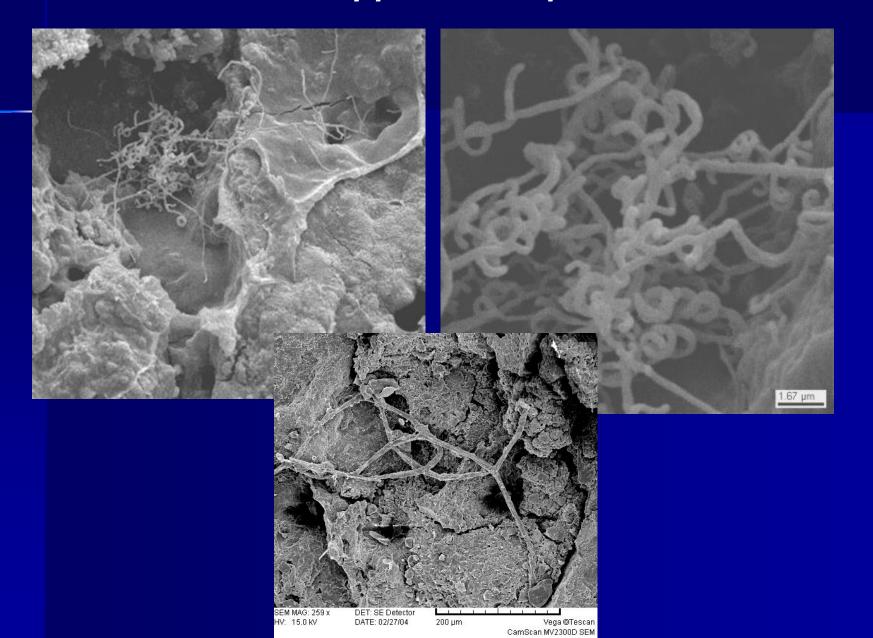
Окисление металлов

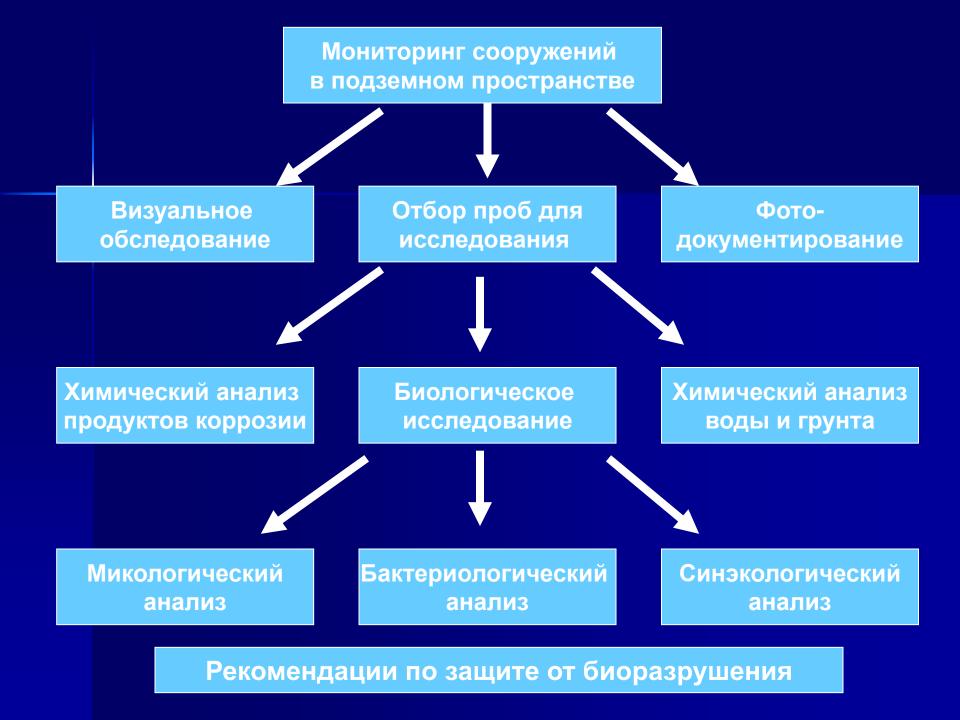
Железо-окисляющие бактерии


- Железобактерии группа хемотрофных микроорганизмов, способных окислять соединения двухвалентного железа до трёхвалентного и осаждать на поверхности и внутри клеток гидроксиды железа.
- Основным представителем железобактерий с энергетическим метаболизмом хемолитотрофного типа является *Thiobacillus ferrooxidans*, способный окислять восстановленные соединения серы.

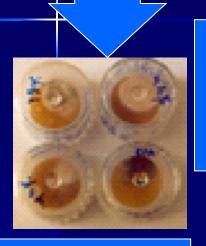
Физиология сульфатредуцирующих бактерий

 Диссимиляционная сульфатредукция (сульфатное дыхание):


$$8[H] + SO_4^2 \longrightarrow H_2S + 2H_2O + 2OH^-$$


- Основные акцепторы электронов: SO_4^2 ; $S_2O_3^2$; SO_3^2
- Доноры электронов: преимущественно низкомолекулярные органические соединения (лактат, пируват и т.д.) и молекулярный водород
- <u>Отношение к О</u>₂ облигатные анаэробы, но есть аэротолерантные виды
- <u>Отношение к температуре</u> психро-, мезо- и термофилы

Desulfovibrio vulgaris


МИКРОБНАЯ ДЕСТРУКЦИЯ БЕТОНА

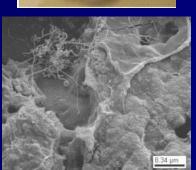
Метод отпечатков с поверхности на питательную среду

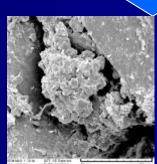
Комплекс методов выявления и идентификации биодеструкторов

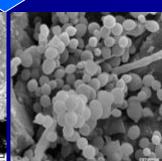
Изоляция и культивирование на искусственных питательных средах

Электронная

микроскопия




Молекулярногенетический анализ


Световая микроскопия

Материалы и конструкции, подверженные деструкции в подземных сооружениях

Бетонные конструкции

Металлические конструкции

Заполнители: полиуретан, битум, пакля

Материалы и конструкции, подверженные деструкции в сооружениях ГТС

Металлические конструкции

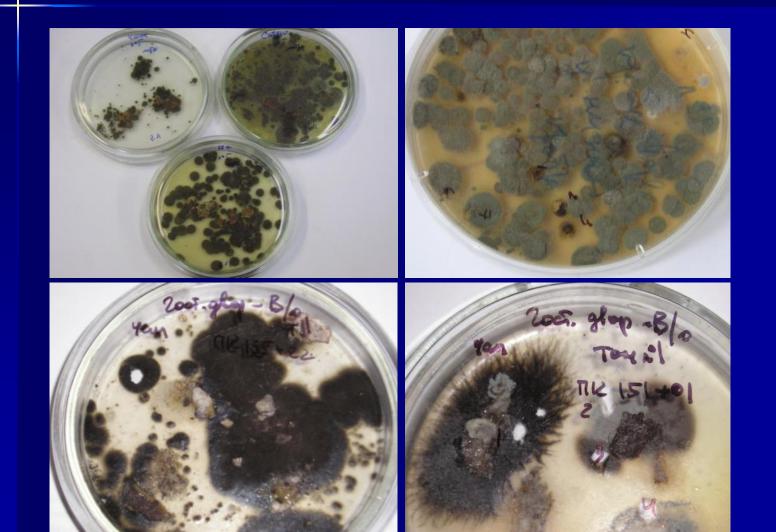
Бетонные конструкции

Заполнители, изолирующие материалы

Множественные сталактиты на крепях. Интенсивная коррозия металлических конструкций.

Активная коррозия и биокоррозия железобетонных тюбингов на больших глубинах

Новообразования (натеки, слизи, сталактиты, выносы)



Коррозия бетона и разрастания мхов в наклонном ходе (под эскалатором)

Колонии микромицетов, изолированные с поврежденных материалов в Петербургском метрополитене

Микобиота Петербургского метрополитена (на основе анализа 250 образцов)

- Выявлено 123 вида микромицетов из 49 родов
- Penicillium 26 видов, Aspergillus 19, Acremonium 7
- Наиболее высокая встречаемость:
 Penicillium, Cladosporium, Aspergillus,
 Acremonium, отд. Zygomycota

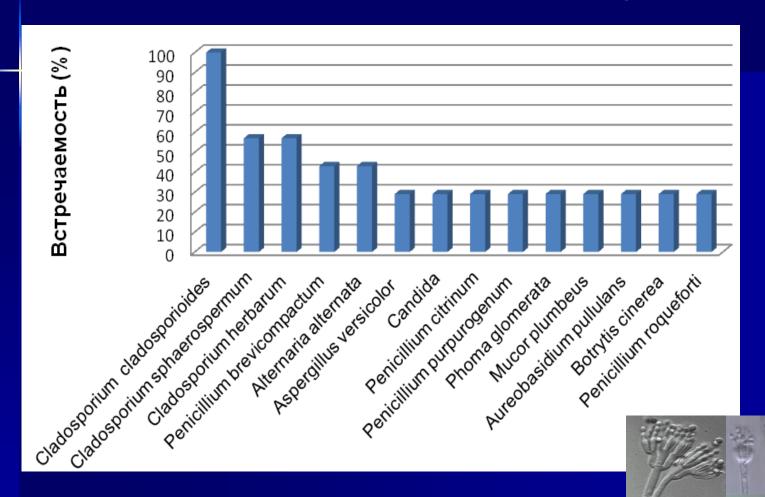
Содержание микроорганизмов в разрушающихся материалах

Микроскопические Бактерии (гетеротрофные, грибы литотрофные) Десятки тысяч КОЕ Более миллиона клеток на 1 грамм на 1 грамм субстрата субстрата

Специфичные

Постоянно встречающиеся

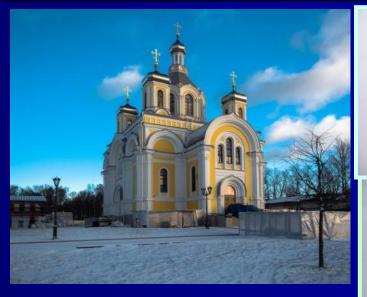
Деструкторы материалов


Часто встречающиеся

Случайные

Редкие

Встречаемость микромицетов в воздушной среде подземных вестибюлей 7 станций метрополитена

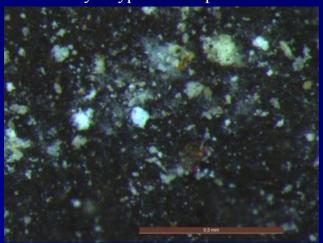

Результаты микробиологического исследования проб разрушенных конструкционных материалов, отобранных в перегонных тоннелях юго-восточной части города

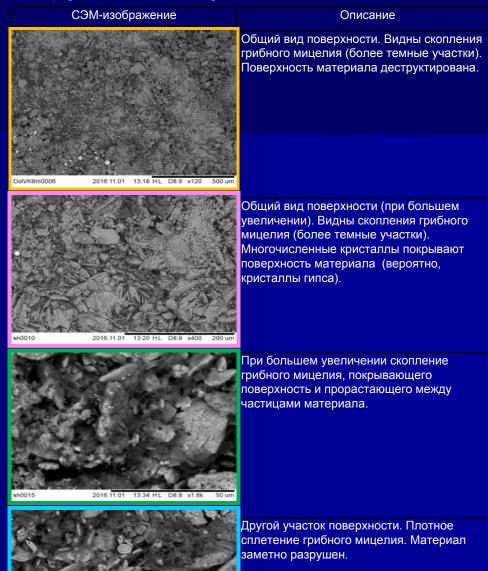
№№ проб	Образец	Состав микроорганизмов (качественный анализ)	Количественная характеристика микроорганизмов
1	ПК 317+91 Бетон	Клостридии Тионовые бактерии	500 бактерий / г 15000 бактерий / г
		Нитрифицирующие бактерии Bacillus cereus	70000 бактерий / г 7500 бактерий / г
		Железобактерии	30000 бактерий / г
2	ПК 321+35	Нитрифицирующие бактерии	57000 бактерий / г
	Разрушенный чугун со	Тионовые бактерии	5300 бактерий / г
	слизью	Железобактерии	99500 бактерий / г
3	ПК 324+87	Нитрифицирующие бактерии	9500 бактерий / г
	Натечные формы со	Клостридии	1100 бактерий / г
	слизью	Тионовые бактерии	80000 бактерий / г
		Грибы	Сплошной рост
4	ПК 338 + 91	Клостридии	700 бактерий / г
	Чугунная труха	Железобактерии	5900 бактерий / г
	(разрушенный	Bacillus cereus	5000 бактерий / г
	тюбинг)	Нитрифицирующие бактерии	50000 бактерий / г
		Тионовые бактерии	10000 бактерий / г
5	ПК 345+60	Железобактерии	109700 бактерий / г
	Разрушенный чугун со	Нитрифицирующие бактерии	1500 бактерий / г
	слизью	Bacillus cereus	100 бактерий / г
		Тионовые бактерии	700 бактерий / г
		Клостридии	9000 бактерий / г

Сообщества микроорганизмов в пробах грунтов и строительных материалов Церкви Святой Троицы

NōNō	Виды микромицетов
1.	Aspergillus flavipes
2.	Aspergillus flavus
3.	Aspergillus ustus
	(доминирует в грунтах)
4.	Aspergillus versicolor
5 .	Cladosporium
	cladosporioides
6.	Cladosporium
	sphaerospermum
7.	Fusarium chlamydosporum
8.	Penicillium brevicompactum
9.	Penicillium chrysogenum
10.	Penicillium expansum
11.	Penicillium oxalicum
12.	Penicillium waksmanii
13.	Trichoderma viride
14.	Неспороносящий
	светлоокрашенный гриб
15.	Неспороносящий
	темноокрашенный гриб

Nº	Глубина	Наименование	Общее микробное число (КОЕ
пробы	отбора, м	породы	на 1 грамм субстрата)
1	2,3	Супесь	Более 10 ⁷
2	5,7	Суглинок	5,8x10 ⁶
3	9,0	Суглинок	2,5x10 ⁶
4	16,6	Супесь	1,9x10 ⁶
5	26	Супесь	6,7x10 ⁶
6	35	Супесь	7,2x10 ⁶



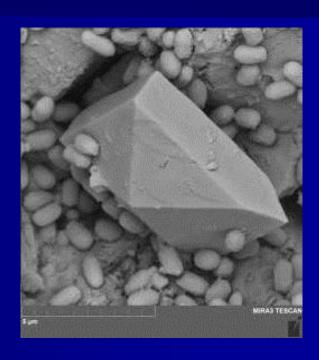

Микроскопическое исследование поврежденного штукатурного покрытия в фасаде здания Церкви Святой Троицы

Черная биопленка на поверхности штукатурного покрытия

Белый мицелиальный налет, развивающийся на черной органоминеральной субстанции



Основные проблемы при организации испытаний материалов на биостойкость


- Подбор, проверка и подготовка тесткультур для проведения испытаний
- Определение оптимальных условий испытаний
- Оценка результатов испытаний

Различное воздействие на карбонатный субстрат бактерий рода Bacillus при различных режимах испытаний

В жидкой среде

Во влажной камере

ЗАКЛЮЧЕНИЕ

- 1. В многокомпонентном подземном пространстве Санкт-Петербурга микробиота играет важную роль, оказывая воздействие на состояние грунтов, а также долговечность сооружений.
- 2. В условиях подземного пространства Санкт-Петербурга, а также других городов при преимущественном развитии песчано-глинистых грунтов следует изучать биокоррозионные процессы в конструкционных материалах с целью повышения долговечности их использования.
- 3. Для повышения эффективности ремонтных работ необходимы поиск и разработка биоустойчивых конструкционных материалов, в том числе гидроизоляционных и специальных покрытий для тюбингов и других типов железобетонных обделок.
- 4. При оценке условий эксплуатации конкретных объектов и их текущего состояния необходимо учитывать активность деструктивных микробоценозов, как одного из ведущих факторов возникновения и протекания коррозионных процессов в условиях мегаполиса.